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Kinetic analysis of multi enzyme systems:
A case study of the closed system of creatine kinase,
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This paper describes a general methodology to handle closed multi enzyme systems us-
ing mixture of symbolic (which depends on the Gröbner Basis technique) and numerical
computation methods. The applicability of the proposed method has been examined for the
closed three-enzyme system of rabbit heart creatine kinase (EC 2.7.3.2), yeast hexokinase
(EC 2.7.1.1) and human erythrocyte glucose 6-phosphate dehydrogenase (EC 1.1.1.49) using
experimental data.
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1. Introduction

When a sequence of enzyme reactions form a pathway (a multi enzyme system),
its kinetic analysis can be difficult. A multi enzyme system is one whose biologically
realistic mathematical description consists of a system of non-linear differential and al-
gebraic equations including a number of unknown parameters that are difficult to esti-
mate, although it is very important from the biochemical point of view to characterise
the system. A mixture of symbolic and numerical computation techniques provides a
tool for the analysis of such systems.

Modern techniques of computer algebra, which perform symbolic computations,
allow previously insoluble problems to be tackled, and thus, offer a route to analyse the
system.

Recently, novel techniques have been proposed for the kinetic analysis of multi en-
zyme systems including a mixture of symbolic and numerical computation methods [1].
Using these techniques, Bayram [2] has investigated the kinetics of two-enzyme systems.
The method has been applied to more complex systems [3].
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Figure 1. Shematic representation of the closed system of CK-HX-G6PD.

2. Construction of mathematical models for the kinetics of CK-HX-G6PD

The CK-HX-G6PD system can be represented as shown in figure 1. In this sys-
tem, while kinetics of both CK and HX follow a Random Bi Bi mechanism, the kinetic
mechanism of G6PD is Ordered Bi Bi with respect to Cleland’s classification [4–7].

According to the mechanisms described in appendix A and B, rate equationsv1, v2

andv3 for each enzyme mechanism can be stated easily.
We make the assumption that

v1 = v2 = v3 = v (1)

at steady state.v is referred to as the overall rate law. Equation (1) can be written as
v − v1 = 0, v − v2 = 0, v − v3 = 0. Because the system is closed, the concentrations
of the various metabolites are related. According to Reder’s algorithms, Yildirim [9] has
derived six linearly independent relationships related with its kinetics. The kinetics of
the system must satisfy these relationships [10]. These are given by

f1= [ATP] + [ADP] − [ATP]0− [ADP]0 = 0,

f2= [DGlu] − [CrP] + [ADP] − [DGlu]0+ [CrP]0− [ADP]0 = 0,

f3= [Cr] + [CrP] − [Cr]0− [CrP]0 = 0,

f4=
[
NADP+

]− [CrP] + [ADP] − [DGlu6P] − [NADP+
]
0

+ [CrP]0− [ADP]0+ [DGlu6P]0 = 0,

f5= [6PGL] + [CrP] − [ADP] + [DGlu6P] − [6PGL]0
− [CrP]0+ [ADP]0− [DGlu6P]0 = 0,

f6= [NADPH] + [CrP] − [ADP] + [DGlu6P] − [NADPH]0
− [CrP]0+ [ADP]0− [DGlu6P]0 = 0,

(2)

where subscripts indicate initial metabolite concentrations. These six relationships, to-
gether with the rate equations, give us a total of nine simultaneous (non-linear) equations
under the assumption given in equation (1) describing the kinetics of the closed system.

3. Experimental procedure

Experimental data for NADPH concentration against time was obtained from the
Biotechnology Application and Research Center in our university. For experimental pro-
cedure, we have followed the method given in Bergmeyer [11]. The temperature is kept
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Figure 2. The experimental curve and the curve drawn substituting the estimated values of the selected
parameters for NADPH concentration against the time.

constant at 25◦C along the time course of the reaction, and we observed the concentra-
tion of NADPH over time using UV–VIS spectrophotometer. Data points were sampled
every 15 min as depicted in figure 2. Initial metabolite and enzymes concentrations used
in the experiment are given in by

[ADP]0 = 5.9× 10−1 mM, [DGlu]0 = 1.13× 101 mM,

[CrP]0 = 2.55× 101 mM,
[
NADP+

]
0 = 3.3× 10−1 mM,

[ATP]0 = 0.0× 100 mM, [Cr]0 = 0.0× 100 mM,

[DGlu6P]0 = 0.0× 100 mM, [6PGL]0 = 0.0× 100 mM,

[NADPH]0 = 0.0× 100 mM, [CK]0 = 8.0× 10−6 mM,

[HX]0 = 3.4× 10−5 mM, [G6PD]0 = 1.4× 10−5 mM.

(3)

4. Computation methods and Gröbner Basis technique

The kinetics of the system depicted in figure 2 was analysed using both symbolic
and numerical computation methods. We have used the Gröbner Basis method as a
symbolic technique. As numerical methods, the solution of initial value problem, finding
roots of a univariate polynomial and optimisation of a multivariable function have been
used.

For numerical computations, we used NAG FORTRAN library [12] and
PRAXIS [13]. C02AEF was implemented for finding all roots of a univariate poly-
nomial with constant coefficients using a search algorithm. D02AEF that integrates a



124 N. Yildirim et al. / Kinetic analysis of multi enzyme systems

stiff system of first-order ordinary differential equations over a range with suitable ini-
tial conditions, using a variable-order, variable-step method implementing the backward
differentiation formulae is used as an integration routine. Finally, for the optimization of
multivariable function, PRAXIS has been implemented which uses Brent’s algorithm.
All floating-point computations are performed in double precision.

We have used MAPLE 4.0 as a computer algebra system for symbolic computa-
tions [14]. Both symbolic and numerical computations were performed on an IBM com-
patible PC with 64 MB RAM and Pentium III processor running under the Windows 98
operating system.

4.1. Gröbner Basis as a symbolic method and its computation via MAPLE

In this section, the basic concepts of a Gröbner Basis will be presented. We have
restricted the discussion to the parts related to our work. Details can be found in [15–17].

LetR be the ring of all polynomials inx1, x2, . . . , xn with real coefficients. A prod-
uct xm1

1 x
m2
2 · · · xmnn , with nonnegative exponents, is called monomial. A set of power

products is denoted byT n = {xβ1
1 · · · xβnn | βi ∈ N, i = 1, . . . , n}. Sometimesxβ1

1 · · · xβnn
is represented byxβ whereβ = (β1, . . . , βn) ∈ N. To give the definition of Gröbner
Basis, we first have to fix a term order.

By a term order on T n we mean a total order< onT n satisfying the following two
conditions:

(a) 1< xβ for all xβ ∈ T n, xβ �= 1.

(b) If xα < xβ , thenxαxγ < xβxγ , for all xγ ∈ T n.
The lexicographical ordering has been used in our computations that is the most

suitable to eliminate variables from a set of equations.
We define thelexicographical order on T n with x1 > x2 > · · · > xn as follows. For

α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ N we define:xα < xβ ⇔ the first coordinatesαi
andβi in α andβ from the left, which are different, satisfyαi < βi .

Let R be a field,R[x1, x2, . . . , xn] is a ring ofn-variable polynomials overR. If
F = {f1, f2, . . . , fn} is a finite subset ofR[x1, x2, . . . , xn], then theideal generated by
F denoted byI is defined as

I =
{

n∑
i=1

uifi

∣∣∣ ui ∈ R[x1, x2, . . . , xn], fi ∈ R, i = 1, . . . , n

}
.

Let f = a1p1 + a2p2 + · · · + ampm with ai �= 0 constant, andpi are monomials
satisfyingpm < pm−1 < · · · < p1. The leading term off , written lt(f ), is a1p1. If
f1, f2, . . . , fs are polynomials then the ideal generated by these polynomials is denoted
by 〈f1, f2, . . . , fs〉. For an idealI ⊆ R denote by lt(I ) the set of leading terms of
elements ofI , and by〈lt(I )〉 the ideal generated by the elements of lt(I ).

A finite subsetG = {g1, g2, . . . , gs} of an idealI is said to beGröbner Basis if
〈lt(g1), lt(g2), . . . , lt(gs)〉 = 〈lt(I )〉. A Gröbner Basis is called a reduced Gröbner Basis
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for an idealI for anygi, if the coefficient of lt(gi) is 1 and no monomial ofgi lies in
〈lt(G− {gi})〉.
Proposition 1. Let I be a polynomial ideal. For a given monomial order,I has a unique
reduced Gröbner Basis.

Proposition 2. Any Gröbner Basis for an idealI is a basis forI .

Proposition 3. LetG be a Gröbner Basis of an ideal andf a polynomial. The remainder
on division off byG does not depend on the ordering of the elements ofG. Moreover,
f is an element ofI if and only if the remainder is zero.

Proposition 4. Let f1, f2, . . . , fm be polynomials. If the reduced Gröbner Basis of
〈f1, f2, . . . , fm〉 is 〈1〉 then the equationsf1 = · · · = fm = 0 have no solutions; if
the basis is not〈1〉 then they must have a solution which may be complex [16].

In 1965, Buchberger [15] presented an algorithm in order to compute the Gröb-
ner Basis of any given ideal. Many computer algebra systems implement a version
of Buchberger’s algorithm. These systems usually compute a reduced Gröbner Basis.
MAPLE’s Gröbner Basis package includes a sub-packages ofgbasis that computes re-
duced Gröbner Basis. Syntax ofgbasis is “gbasis(F,X, termorder)”. Here,F is a list
of polynomials,X is a list of intermediates andtermorder is eithertdeg or plex that are
the names of term ordering which will be used.plex represents lexicographical ordering
while tdeg means total degree ordering which is out of this study’s scope. It computes
the reduced Gröbner Basis of the ideal〈G〉with respect to the intermediatesX and given
term ordering.

5. Parameter estimation procedure for the system of CK-HX-G6PD

To show applicability of the proposed methods to analyse kinetics of a multi en-
zyme system, three parameters ofKADP

M , KCrP
M andKADP

I for the individual system of
CK were selected to be estimated looking at the sensitivity of the overall rate law to
variations in the kinetic parameters. For each parameter,ki, we determine the scaled
derivative

ki

v
· ∂v
∂ki

(4)

taking all the other parameters at their published values, and concentrations at their ex-
perimental levels. A large value of the scaled derivative indicates that fittingki by min-
imising residuals inv will lead to good estimates ofki . Any small error inki will greatly
affectv. Correspondingly, where the scaled derivative is small, variation in the estimate
for ki will have little effect onv, and so the estimate is unlikely to be reliable. Values for
the scaled derivatives in fact vary through the time course of the experiment, since they
are a function of NADPH concentration [2].
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We have determined the scaled derivatives at starting concentrations and seen that
KADP

M ,KCrP
M andKADP

I greatly affectv.
To estimate the parameters, a Gröbner Basis calculation for the system involving

six equations given in equation (2), along with rate equations for individual reactions un-
der the assumption given in equation (1), must be performed. This assumption reduces
the mathematical model for kinetics of the system to system of polynomial equations
that allow us to make the Gröbner Basis calculation. The mathematical model of the
system has 24 distinct kinetic parameters as seen in appendices A and B. Values ob-
tained, under the conditions similar to our experiment conditions in the sense of sources,
pH, temperature, enzyme resources etc., for each of these parameters for individual re-
actions in our system can be found in the literature [4–6]. Substitution of these literature
values of all of these parameters leaving the selected parameters in symbolic form, the
Gröbner Basis calculation yields a system of polynomials in triangular form. In Gröbner
Basis calculation via MAPLE, parameters involved ingbasis syntax for our system of
polynomials are as follows:

X= {CrP,ADP,Cr,ATP,DGlu,DGlu6P,NADP+,6PGL, v
}
,

F = {f1, f2, f3, f4, f5, f6, numer(v − v1), numer(v − v2), numer(v − v3)
}
.

(5)

GB = gbasis(F,X, plex) computes the reduced Gröbner Basis of the ideal〈F 〉 with
respect to the intermediatesX and given term ordering, wherefj (j = 1,2, . . . ,6) are
polynomials given in equation (2) andvj (j = 1,2,3) are rates for individual reactions.
In this case, MAPLE’snumer(v − vi) (i = 1,2,3) command simply picks off the
numerators of(v − vi) that are clearly polynomials.gbasis(F,X, plex) transforms the
systemF into a Gröbner Basis which can be written in triangular form.

Rearrangement of the polynomials in the basis gives us an 11th order polynomial
as the last polynomial of the form given in equation (6) inGB:

11∑
i=0

aiv
i = 0, (6)

whereai = hi([NADPH],KADP
M ,KCrP

M ,KADP
I ), which is easy to solve numerically, if

an experimental value for NADPH concentration and initial values for the parameters to
be estimated are substituted. In our study, last eight equations inGB are linear in the
metabolite concentrations. We can then find the values of all metabolites concentrations
by back substituting them into these equations and solving them in turn.

Since equation (6) is an 11th order polynomial, there is more than one root, and
of these a meaningful one (which makes all metabolites concentrations positive) has
to be chosen. It should be noted that in the real world there must be only one value
for v because the enzyme reaction cannot go at two different velocities. For substituting
initial values for the parameters in equation (6), the authors are not sure that there is only
one positive-real root of equation (6) making all concentrations positive. We noted that
improvement by optimisation routine in the parameters values to be estimated carries
out this restriction especially in the neighbourhood of the optimal values. This situation
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Table 1
Estimated values for the parameters of the closed system.

Parameters Best fit Literature values Estimated values
(mM) (mM) (mM)

KADP
M 0.054 0.050 0.055± 0.0041

CK KCrP
M 3.114 2.900 3.113± 0.0020

KADP
I 0.019 0.140 0.018± 0.0027

is controlled for several initial values of the parameters and each of experimental values
for NADPH concentrations within the program we have developed.

The experimental data consists of NADPH concentration against time. The rate
laws we are fitting relatev = d[NADPH]/dt to [NADPH], but we need to integrate the
rate laws to fit to the data. Since analytical integration of the rate laws is not in general
possible, we used numerical integration instead. When fitting to integrated equations,
it is important not to perform a complete numerical integration over the range and min-
imise residuals.

This is essentially an overconstrained multi-point integration problem. We provide
estimates for each of three kinetic parameters, integrate numerically from one exper-
imental data point to the next, and record the difference between the numerical and
experimental values as a residual error. We do this for allN data points, yieldingN − 1
residual errors. We then use standard least-squares minimisation to obtain better esti-
mates of parameters that will reduce these residual errors.

The process is iterated. It is terminated either after a predetermined number of
iterations, or whenF becomes approximately constant over several iterations.

6. Results and discussion

We have used the algorithm explained in the previous section to estimate a total of
three parameters. Estimated values of these parameters are given in table 1. Confidence
intervals for the parameters are determined by the Bootstrap method [18]. Same esti-
mations were obtained for several starting points. Error tolerances chosen for C02AEF,
D02EAF and PRAXIS are 10−8, 10−2 and 10−3, respectively. The sum of error squares
obtained is 73.49× 10−12 M2.

The results of the least-squares fit (a best-fit curve superimposed on the experimen-
tal data) are illustrated in figure 2, showing that our parameters are very well.

Although the method presented here is mathematically accurate and can handle
more complex situations, there is a problem with this approach, i.e., computer algebra
systems may generate massive expressions in Gröbner Basis computation. On evaluation
with specific values in floating point arithmetic by numerical packages, such expressions
are prone to serious rounding, overflow and underflow errors. Some alternative proce-
dures including interfacing computer algebra and numerical analysis systems have been
developed to overcome these difficulties [19].
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Figure 3.

Nomenclature

[A] concentration of A
CrP creatine phosphate
DGlu6P D-glucose 6-phosphate
DGlu D-glucose
Cr creatine
ATP adenosine triphosphate
ADP adenosine diphosphate
NADP+ nicotinamide adenin dinucleotide phophate (oxidized form)
NADPH nicotinamide adenin dinucleotide phophate (reduced form)
6PGL 6-phosphoglucono-δ-lactone
CK creatine kinase
HX hexokinase
G6PD glucose 6-phosphate dehydrogenase

Appendix A. Rate equation for rapid equlibrium Random Bi Bi mechanism with
dead-end EAP and EBQ complexes

The reaction mechanism is of the random type and can be represented as shown in
figure 3.

It will be assumed that the interconvention of the central complexes, EAB and
EPQ, is the slowest step of the reaction, that rapid equilibrium is established at all other
steps, and that the dead-end complexes EAP and EBQ are formed by the reactions:

EA+ P
KP

II�EAP
KA

II� A + EP,

EB+Q
K

Q
II�EBQ

KB
II� B+ EQ.

It should be noted thatKA
I ,KB

I ,KP
I andKQ

I represent dissociation constants for the
reaction of the free enzyme with A, B, P and Q, respectively, and the Michaelis–Menten
constantsKA,KB,KP andKQ are dissociation constants for the reaction of A, B, P and
Q with EB, EA, EQ and EP, respectively.KA

II , KB
II , KP

II andKQ
II are also dissociation
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Figure 4.

constants, but for the reaction of A, B, P and Q with different forms of the enzyme,
namely, EP, EQ, EA and EB, respectively.

The complete rate equation for the above mechanism may be written as

v=
(
V F

max[A][B] −
V R

max[P][Q]KA
I K

B

KPK
Q
I

)

×
(
KA

I K
B +KB[A] +KA[B] + [A][B] + K

A
I K

B[A][P]
KP

I K
A
II

+ K
A
I K

B[P]
KP

I

+ K
A
I K

B[Q]
K

Q
I

+ K
A
I K

B[P][Q]
KPK

Q
I

+ K
A
I K

B[B][Q]
K

Q
I K

B
II

)−1

.

Algebraic expressions for all parameters can found be in [8].

Appendix B. Steady state rate equation for Ordered Bi Bi mechanism

The reaction mechanism is of the Ordered Bi Bi type and can be represented as
shown in figure 4.

Under steady state assumptions, the rate equation for this mechanism can be writ-
ten as

v=
(
V F

max[A][B]
KA

I K
B
M

− V
R
max[P][Q]
KP

MK
Q
I

)

×
(

1+ [A]
KA

I

+ K
A
M[B]

KA
I K

B
M

+ K
Q
M[P]

KP
MK

Q
I

+ [Q]
K

Q
I

+ [A][B]
KA

I K
B
M

+ K
Q
M[A][P]

KA
I K

P
MK

Q
I

+ K
A
M[B][Q]

KA
I K

B
MK

Q
I

+ [P][Q]
KP

MK
Q
I

+ [A][B][P]
KA

I K
B
MK

P
I

+ [B][P][Q]
KB

I K
P
MK

Q
I

)−1

.

Parameters in terms of rate constants can be obtained algebraically as in [8].
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